Selasa, 21 Mei 2013

VEKTOR

Misalkan dua orang anak mendorong sebuah benda dengan vektor gaya masing-masing sebesar F1 dan F2, seperti ditunjukkan diagram di bawah. Ke arah mana benda itu akan pindah ? tentu saja benda tersebut tidak berpindah searah F1 atau F2. dalam kasus seperti itu, maka benda tersebut berpindah searah dengan F1 + F2. Operasi ini disebut jumlah vektor.
Cara menggambar jumlah dua buah vektor adalah dengan metode segitiga. Pertama, gambar vektor F1 berupa tanda panah. kedua, gambar vektor kedua, F2, dengan pangkalnya berhimpitan dengan ujung vektor pertama, F1. ketiga, jumlahkan kedua vektor, dengan menggambar vektor resultan (F1 + F2), dari pangkal vektor F1 menuju ujung vektor F2. selesai. Proses ini ditunjukkan pada gambar di bawah ini.
Cara menggambar selisih vektor pada dasarnya sama dengan menggambar penjumlahan dua vektor. Sebagai contoh, sebuah vektor F1 dan vektor F2 nilainya seperti tampak pada diagram di bawah. Berapa selisih kedua vektor tersebut ? misalnya F3 adalah selisih vektor F1 dan F2, maka dapat kita tulis F3 = F1 – F2 atau F3 = F1 + (-F2). Hal ini menunjukkan bahwa selisih antara vektor F1 dan F2 sama saja dengan penjumlahan vektor F1 dan vektor -F2. tanda minus hanya menunjukkan bahwa arah -F2 berlawanan dengan F2. Bingung ? silahkan baca terus biar paham.
Bagaimana menggambar selisih vektor F1 dan F2 ?
Pertama, gambar terlebih dahulu tanda panah yang melambangkan vektor F1. kedua, gambar vektor -F2. vektor -F2 besarnya sama dengan F2, hanya arahnya berlawanan. (Lihat dan bandingkan gambar di bawah dan di atas). Ketiga, gambar tanda panah vektor resultan F3, di mana pangkal vektor F3 berimpit dengan pangkal vektor F1 dan ujung vektor F3 berimpit dengan ujung vektor -F2. Berimpit itu artinya menempel, atau apalah terserah kamu. Selesai….

Menggambar Penjumlahan lebih dari 2 Vektor dengan metode Poligon
Poligon itu artinya segi banyak/banyak segi. Gimana, dah siap belum ? sekarang tarik napas panjang….
Sebelumnya, kita belajar menggambar 2 vektor dengan cara segitiga. Bagaimana jika kamu disuruh menggambar resultan atau jumlah vektor yang lebih dari 3 ?
Misalnya kamu berpindah sejauh 4 meter, vektor A (lihat gambar di bawah), lalu kamu berpindah lagi sejauh 3 meter, vektor B. Karena hobimu jalan-jalan, maka kamu pindah lagi sejauh 2 meter, vektor C. karena suka jalan-jalan maka kamu dihukum pacarmu (aneh ya…) untuk menggambar vektor perpindahanmu tadi. Loncat ke bawah….
untuk menggambar vektor resultan/hasil penjumlahan lebih dari 2 vektor, maka kamu tidak bisa menggunakan metode/cara segitiga. Kenapa? Cari tahu sendiri ya, kan dah besar. Kamu harus menggunakan metode poligon/segi banyak. Caranya, pertama, gambar vektor A. kedua, gambar vektor B, di mana pangkal vektor B berimpit/nempel dengan ujung vektor A (lihat gambar di bawah). Ketiga, gambar vektor C di ujung vektor B. caranya seperti menggambar vektor B. terakhir, gambar vektor D sebagai vektor resultan/hasil, dimana pangkal vektor D nempel dengan pangkal vektor A dan ujung vektor B nempel dengan ujung vektor C. selesai…
Kalo masih bingung, baca, sambil lihat gambar. Guampang to ? mission complete… lanjut.
Menggambar Penjumlahan 2 atau Lebih vektor dengan metode Jajaran Genjang.
Selain menggambar penjumlahan vektor dengan metode/cara segitiga dan poligon, kita juga bisa menggunakan metode jajaran genjong, eh genjang. Kalau metode segitiga khusus untuk dua vektor dan metode poligon khusus untuk lebih dari dua vektor, maka metode jajaran genjang untuk menggambar penjumlahan dua vektor atau lebih. Bagaimana menggambar penjumlahan dua vektor atau lebih menggunakan cara jajaran genjang ?
Menggambar penjumlahan 2 vektor menggunakan metode jajaran genjong.
Misalkan dua orang anak mendorong sebuah benda dengan vektor Gaya masing-masing sebesar F1 dan F2, seperti ditunjukkan diagram di bawah. Ke arah mana benda itu akan pindah ?
untuk menggambar penjumlahan dua vektor, lakukan sesuai langkah2 di bawah ini. Pertama, gambar vektor F1 menggunakan tandah panah (lihat gambar di bawah). Kedua, gambar vektor F2, di mana pangkal/buntut berimpit/nempel dengan pangkal/buntut vektor F1. ketiga, gambar vektor resultan, F3 (F1 + F2), di mana pangkal vektor F3 nempel dengan pangkal vektor F1 dan F2, sedangkan ujung vektor F3 nempel dengan titik temu garis putus-putus dari kedua ujung vektor F1 dan vektor F2 (sambil lihat gambar, biar tidak bingung).
Menggambar penjumlahan lebih dari 2 vektor menggunakan metode jajaran genjong.
Misalnya kamu berpindah sejauh 4 meter seperti vektor A (lihat gambar di bawah), lalu kamu berpindah lagi sejauh 3 meter seperti vektor B. Karena hobimu jalan-jalan, maka kamu pindah lagi sejauh 2 meter seperti vektor C. karena suka jalan-jalan maka kamu dihukum pacarmu (aneh ya…) untuk menggambar vektor perpindahanmu, tapi kali ini dengan metode jajaran genjong. Bagaimanakah ?
Untuk menggambar penjumlahan lebih dari 2 vektor, lihat petunjuk berikut ini. Pertama, gambar vektor A menggunakan tandah panah (lihat gambar di bawah). Kedua, gambar vektor B, di mana pangkalnya berimpit/nempel dengan pangkal/buntut vektor A. ketiga, gambar vektor C, di mana pangkalnya berhimpit dengan pangkal vektor A dan B. keempat, buat garis putus-putus tegak lurus dari ujung vektor A dan B sampai kedua garis putus-putus tersebut bertemu, Vektor D (buat garis satu2, kalo kamu kidal+, pake aja dua tanganmu sekalian, hehe…). Kelima, tarik garis dari pangkal vektor A,B dan C menuju titik temu garis putus-putus yang sudah kamu buat tadi (jangan lupa lihat gambar ya). Keenam, buat lagi garis putus2 tegak lurus dari titik temu vektor A dan B dan dari ujung vektor C sampai kedua garis putus2 tersebut bertemu. Nah, sekarang tarik garis lurus dari pangkal vektor A, B dan C menuju titik temu garis putus2 yang baru saja kamu buat, Vektor Resultan (R). Garis terakhir tersebut adalah vektor resultannya….
Tadi kita belajar menggambar resultan penjumlahan vektor, sekarang kita belajar menentukan besar dan arah vektor resultan.

http://www.gurumuda.com/penjumlahan-vektor

FISIKA DASAR

MAGNET
Magnet atau magnit adalah suatu obyek yang mempunyai suatu medan magnet. Kata magnet (magnit) berasal dari bahasa Yunani magnítis líthos yang berarti batu Magnesian. Magnesia adalah nama sebuah wilayah di Yunani pada masa lalu yang kini bernama Manisa (sekarang berada di wilayah Turki) di mana terkandung batu magnet yang ditemukan sejak zaman dulu di wilayah tersebut.
Pada saat ini, suatu magnet adalah suatu materi yang mempunyai suatu medan magnet. Materi tersebut bisa dalam berwujud magnet tetap atau magnet tidak tetap. Magnet yang sekarang ini ada hampir semuanya adalah magnet buatan.
Magnet selalu memiliki dua kutub yaitu: kutub utara (north/ N) dan kutub selatan (south/ S). Walaupun magnet itu dipotong-potong, potongan magnet kecil tersebut akan tetap memiliki dua kutub.
Magnet dapat menarik benda lain. Beberapa benda bahkan tertarik lebih kuat dari yang lain, yaitu bahan logam. Namun tidak semua logam mempunyai daya tarik yang sama terhadap magnet. Besi dan baja adalah dua contoh materi yang mempunyai daya tarik yang tinggi oleh magnet. Sedangkan oksigen cair adalah contoh materi yang mempunyai daya tarik yang rendah oleh magnet.
ARAH MEDAN MAGNET :
KEMAGNETAN ( MAGNETOSTATIKA )
Benda yang dapat menarik besi disebut MAGNET
Macam-macam bentuk magnet, antara lain :
magnet batang magnet ladam magnet jarum
clip_image001
Magnet dapat diperoleh dengan cara buatan.
Jika baja di gosok dengan sebuah magnet, dan cara menggosoknya dalam arah yang tetap, maka baja itu akan menjadi magnet.
clip_image002
Baja atau besi dapat pula dimagneti oleh arus listrik.
Baja atau besi itu dimasukkan ke dalam kumparan kawat, kemudian ke dalam kumparan kawat dialiri arus listrik yang searah. Ujung-ujung sebuah magnet disebut Kutub Magnet. Garis yang menghubungkan kutub-kutub magnet disebut sumbu magnet dan garis tegak lurus sumbu magnet serta membagi dua sebuah magnet disebut garis sumbu.
clip_image003
Sebuah magnet batang digantung pada titik beratnya. Sesudah keadaan setimbang tercapai, ternyata kutub-kutub batang magnet itu menghadap ke Utara dan Selatan.
Kutub magnet yang menghadap ke utara di sebut kutub Utara.
Kutub magnet yang menghadap ke Selatan disebut kutub Selatan.
Hal serupa dapat kita jumpai pada magnet jarum yang dapat berputar pada sumbu tegak ( jarum deklinasi ).
Kutub Utara jarum magnet deklinasi yang seimbang didekati kutub Utara magnet batang, ternyata kutub Utara magnet jarum bertolak. Bila yang didekatkan adalah kutub selatan magnet batang, kutub utara magnet jarum tertarik.
clip_image004
Kesimpulan : Kutub-kutub yang sejenis tolak-menolak dan kutub-kutub yang tidak sejenis tarik-menarik
Jika kita gantungkan beberapa paku pada ujung-ujung sebuah magnet batang ternyata jumlah paku yang dapat melekat di kedua kutub magnet sama banyak. Makin ke tengah, makin berkurang jumlah paku yang dapat melekat.
Kesimpulan : Kekuatan kutub sebuah magnet sama besarnya semakin ke tengah kekuatannya makin berkurang.
HUKUM COULOMB.
Definisi : Besarnya gaya tolak-menolak atau gaya tarik menarik antara kutub-kutub magnet, sebanding dengan kuat kutubnya masing-masing dan berbanding terbalik dengan kwadrat jaraknya.
clip_image005
clip_image007
F = gaya tarik menarik/gaya tolak menolak dalam newton.
R = jarak dalam meter.
m1 dan m2 kuat kutub magnet dalam Ampere meter.clip_image009
clip_image0110 = permeabilitas hampa.
Nilai clip_image013= 107 Weber/A.m
Nilai permeabilitas benda-benda, ternyata tidak sama dengan permeabilitas hampa.
Perbandingan antara permeabilitas suatu zat debgan permeabilitas hampa disebut permeabilitas relatif zat itu.
mrclip_image015
clip_image011[1]r = Permeabilitas relatif suatu zat.
clip_image011[2]= permeabilitas zat itu
clip_image011[3]0 = permeabilitas hampa.
PENGERTIAN MEDAN MAGNET.
Medan magnet adalah ruangan di sekitar kutub magnet, yang gaya tarik/tolaknya masih dirasakan oleh magnet lain.
Kuat Medan ( H ) = ITENSITY.
Kuat medan magnet di suatu titik di dalam medan magnet ialah besar gaya pada suatu satuan kuat kutub di titik itu di dalam medan magnet m adalah kuat kutub yang menimbulkan medan magnet dalam Ampere-meter. R jarak dari kutub magnet sampai titik yang bersangkutan dalam meter. dan H = kuat medan titik itu dalam : clip_image017atau dalam clip_image019
Garis Gaya.
Garis gaya adalah : Lintasan kutub Utara dalam medan magnet atau garis yang bentuknya demikian hingga kuat medan di tiap titik dinyatakan oleh garis singgungnya.
Sejalan dengan faham ini, garis-garis gaya keluar dari kutub-kutub dan masuk ke dalam kutub Selatan. Untuk membuat pola garis-garis gaya dapat dengan jalan menaburkan serbuk besi disekitar sebuah magnet.
Gambar pola garis-garis gaya.
clip_image020
Rapat Garis-Garis Gaya ( FLUX DENSITY ) = B
Definisi : Jumlah garis gaya tiap satuan luas yang tegak lurus kuat medan.
clip_image022
Kuat medan magnet di suatu titik sebanding dengan rapat garis-garis gaya dan berbanding terbalik dengan permeabilitasnya.
clip_image024
clip_image026
B = rapat garis-garis gaya.
clip_image011[4]= Permeabilitas zat itu.
H = Kuat medan magnet.
catatan : rapat garis-garis gaya menyatakan kebesaran induksi magnetik.
Medan magnet yang rapat garis-garis gayanya sama disebut : medan magnet serba sama ( homogen )
clip_image028
Bila rapat garis-garis gaya dalam medan yang serba sama B, maka banyaknya garis-garis gaya ( clip_image030clip_image009[1]) yang menembus bidang seluar A m2 dan mengapit sudut clip_image032dengan kuat medan adalah : clip_image030[1]= B.A Sinclip_image032[1] Satuanya : Weber.
Diamagnetik Dan Para Magnetik.
Sehubungan dengan sifat-sifat kemagnetan benda dibedakan atas Diamagnetik dan Para magnetik.
Benda magnetik : bila ditempatkan dalam medan magnet yang tidak homogen, ujung-ujung benda itu mengalami gaya tolak sehingga benda akan mengambil posisi yang tegak lurus pada kuat medan. Benda-benda yang demikian mempunyai nilai permeabilitas relatif lebih kecil dari satu. Contoh : Bismuth, tembaga, emas, antimon, kaca flinta.
Benda paramagnetik : bila ditempatkan dalam medan magnet yang tidak homogen, akan mengambil posisi sejajar dengan arah kuat medan. Benda-benda yang demikian mempunyai permeabilitas relatif lebih besar dari pada satu. Contoh : Aluminium, platina, oksigen, sulfat tembaga dan banyak lagi garam-garam logam adalah zat paramagnetik.
Benda feromagnetik : Benda-benda yang mempunyai effek magnet yang sangat besar, sangat kuat ditarik oleh magnet dan mempunyai permeabilitas relatif sampai beberapa ribu. Contoh : Besi, baja, nikel, cobalt dan campuran logam tertentu ( almico ).
Sumber :

EFEK CHOMTON

 
Anneyoung Chiggudeul ^^
kali ini kita akan membahas tentang efek Compton radiasi partikelnya.
OK Lets Play..Cahaya sebagai suatu gejala gelombang memiliki pula sifat yang kita kaitkan dengan partikel. Energinya tidak disebar merata pada muka gelombang, melainkan dilepaskan dalam bentuk buntelan seperti partikel, sebuah buntelan diskret (kuantum) energi elektromagnet ini dikenal sebagai sebuah foton. Mengenai foton ini masih banyak yang harus dibahas dan diteliti, masih belum jelas ia partikel atau gelombang maka banyak percobaan yang dilakukan untuk menjelaskan dan membuktikan foton yang dimulai dengan percobaan efek fotoelektrik yang dilakukan Einstein.
Cara lain radiasi berinteraksi dengan atom adalah melalui efek Compton, dalam mana radiasi dihamburkan oleh elektron hampir bebas yang terikat lemah pada atomnya. Sebagain energi radiasi diberikan kepada elektron, sehingga terlepas dari atom ; energi yang sisa diradiasikan kembali sebagai radiasi electromagnet. Menurut gambaran gelombang, energi radiasi yang dipancarkan itu lebih kecil daripada energi  radiasi yang datang (selisihnya berubah menjadi energi kinetik elektron), namun panjang gelombang keduanya tetap sama. Kelak akan kita lihat bahwa konsep foton meramalkan hal yang berbeda bagi radiasi yang dihamburkan.

Proses hamburan ini dianalisis sebagai suatu interaksi (“tumbukan” dalam pengertian partikel secara klasik) antara sebuah foton dan sebuah elektron, yang kita anggap diam.jadi setelah membaca ini sudah tau bukan apa itu efek compton ??jangan lupa comment nya yah ditungguGamsahamnida ^^ sumber : buku fisika modern S Krane Kenneth

GELOMBANG MEKANIS


PENGERTIAN GELOMBANG.
Gejala mengenai gerak gelombang banyak kita jumpai sehari-hari. Kita tentu mengenal gelombang yang dihasilkan oleh sebuah benda yang dijatuhkan ke dalam air, sebab hal itu mudah kita amati.
Di dalam perambatannya ada gelombang yang memerlukan medium perantara, misalnya gelombang air, gelombang bunyi. Tetapi ada juga yang tidak memerlukan medium perantara, misalnya gelombang cahaya dan gelombang elektromagnet.
Di dalam bab ini dibahas hanyalah gelombang di dalam medium yang lenting yang disebut : Gelombang Mekanis.
Karena sifat kelentingan dari medium maka gangguan keseimbangan ini dirambatkan ketitik lainnya.
Jadi gelombang adalah usikan yang merambat dan gelombang yang bergerak akan merambatkan energi (tenaga).
Sifat umum gelombang , antara lain :
a. dapat dipantulkan (refleksi)
b. dapat dibiaskan (refraksi)
c. dapat dipadukan (interferensi)
d. dapat dilenturkan (defraksi)
e. dapat dipolarisasikan (diserap arah getarnya)
Berdasarkan arah getaran partikel terhadap arah perambatan gelombang dapat dibedakan menjadi Gelombang Transversal  dan Gelombang Longitudinal.
Gelombang Transversal ialah gelombang yang arah perambatannya tegak lurus pada arah getaran partikel.
 misalnya : gelombang pada tali, gelombang permukaan air, gelombang elektromagnetik.
Gelombang Longitudinal ialah gelombang yang arah perambatannya searah dengan arah getaran partikel.
 misalnya : gelombang pada pegas, gelombang bunyi.

PANJANG GELOMBANG
Bila sebuah partikel yang bergetar menggetarkan partikel-partikel lain yang berada disekitarnya, berarti getaran itu merambat. Getaran yang merambat disebut Gelombang Berjalan.
 Jarak yang ditempuh getaran dalam satu periode disebut Panjang Gelombang ( l ).
Untuk lebih jelasnya lihat animasi di WWW.Stevanus_fisika.homestead.com
Bila cepat rambat gelombang V dan periode getarannya T maka :
PERSAMAAN GELOMBANG BERJALAN.
Dari titik P merambat getaran yang amplitudonya A, periodenya T dan cepat rambat getarannya v. Bila titik P telah bergetar t detik, simpangannya :
Dari P ke Q yang jaraknya x getaran memerlukan detik, jadi ketika P telah bergetar t detik, titik Q baru bergetar detik. Simpangan Q saat itu :
Jadi persamaan gelombang berjalan adalah :
Perbedaan  phase antara titik P dan Q adalah :
            
Bila getaran itu merambat dari kanan ke kiri dan P telah bergetar t detik, maka simpangan titik Q :

PEMANTULAN GELOMBANG BERJALAN.
Titik P digerakkan ke atas dan kembali ke titik seimbang. karenanya dari P merambat gunung gelombang menuju Q. Bila Q ujung terikat, ternyata yang dipantulkan adalah lembah gelombang.
Jadi oleh ujung terikat gunung gelombang dipantulkan sebagai lembah gelombang, phase gelombang terpantul berupa setengah. Tetapi  bila Q ujung yang bebas, yang dipantulkan adalah gunung gelombang.

Kesimpulan : Pada ujung terikat phase gelombang terpantul berubah , sedangkan pada pemantulan diujung bebas phase gelombang terpantul tidak berubah.

PERSAMAAN GELOMBANG STASIONER.
Pada proses pantulan gelombang, terjadi gelombang pantul yang mempunyai amplitudo dan frekwensi yang sama dengan gelombang datangnya, hanya saja arah rambatannya yang berlawanan. hasil interferensi (perpaduan) dari kedua gelombang tersebut disebut Gelombang Stasioner Atau Gelombang Diam.

PADA UJUNG BEBAS.
Selisih phase gelombang datang dan gelombang pantul di ujung bebas adalah 0, jadi     Dj = 0
Ini berarti bahwa phase gelombang datang sama dengan phase gelombang pantul. Jika L adalah panjang tali dan x adalah jarak titik C yang teramati terhadap titik pantul pada ujung bebas, yaitu titik B. Jika A digetarkan, maka persamaan simpangan di A adalah
  
Titik C yang berjarak x dari ujung bebas B, mengalami getaran gelombang dari :
Gelombang datang : yaitu apabila A telah bergetar t detik, maka tentulah C menggetar kurang dari t detik, selisih waktu tersebut adalah sebesar , sehingga
dan  persamaan di C menjadi :
 sebab v . T = l
Gelombang pantul :  Rambatan gelombang telah menempuh jarak L + x, sehingga beda waktunya menjadi  detik, maka detik.

Maka persamaan simpangan di C menjadi :
Hasil superposisi kedua gelombang adalah : yC = yC1 + yC2  jadi :
Persamaan di atas dapat dianggap sebagai persamaan getaran selaras dengan amplitudo  dan tergantung dari tempat titik yang diamati. Dari ungkapan sebagai amplitudo tidak tergantung dari pada waktu. Oleh karena pada simpul nilai amplitudo adalah nol dan lagi tidak merupakan fungsi dari pada waktu (t), maka :
 = 0 sehingga :
Dengan ungkapan ini terbuktilah , bahwa jarak simpul ke titik pantul bebas adalah  :
Jarak antara dua simpul berturutan adalah :
 
Tempat-tempat yang menyatakan perut mempunyai harga amplitudo yang maksimal,
jadi :

Jadi terbukti pula, bahwa jarak perut ke titik pantul bebas adalah bilangan genap kali panjang gelombang atau  .

UJUNG TERIKAT (UJUNG TETAP)
Dititik pantul yang tetap gelombang datang dan gelombang pantul berselisih phase, atau gelombang pantul berlawanan dengan phase gelombang datang . datang Jadi A digetarkan transversal maka
Jika titik C yang kita amati, maka bagi gelombang yang datang dari kiri (gelombang datang) waktu menggetarnya C, yaitu tC terhadap waktu menggetarnya A, yaitu tA = t detik berbeda  detik, sehingga . Jadi :

Bagi gelombang pantul yang datang dari kanan waktu getar C berselisih  detik dan fasenya berselisih , atau p,
sehingga :

Maka hasil superposisi gelombang datang dan gelombang pantul oleh ujung terikat adalah :
yC = yC1 + yC2
Jadi :

Ungkapan ini dapat   diartikan  sebagai  persamaan  getaran  selaras  dengan  amplitudo 
, yang ternyata tak tergantung pada t, oleh karena itu simpul mempunyai amplitudo 0 (nol) dan tidak tergantung dari pada waktu (t), maka untuk :

Jadi terbukti pula, bahwa jarak simpul ke titik pantul tetap adalah bilangan genap kali panjang gelombang atau  jarak antara dua simpul berturutan adalah :
Tempat perut menunjukkan simpangan yang maksimal, jadi :
Disini terlihat pula, bahwa jarak perut ke titik pantul tetap adalah bilangan ganjil kali panjang gelombang dan harga maksimum simpangan (amplitudo) gelombang stasioner adalah dua kali amplitudo gelombang yang menimbulkan inteferensi.
Jarak antara simpul dengan perut yang terdekat adalah :
 
Sedangkan jarak antara dua perut yang berturutan adalah :


PERCOBAAN MELDE
Percobaan Melde digunakan untuk menyelidiki cepat rambat gelombang transversal dalam dawai.
Perhatikan gambar di bawah ini.
Pada salah satu ujung tangkai garpu tala diikatkan erat-erat sehelai kawat halus lagi kuat. kawat halus tersebut ditumpu pada sebuah katrol dan ujung kawat diberi beban, misalnya sebesar g gram. Garpu tala digetarkan dengan elektromagnet secara terus menerus, hingga amplitudo yang ditimbulkan oleh garpu tala konstan.
Untuk menggetarkan ujung kawat A dapat pula dipakai alat vibrator. Setelah terbentuk pola gelombang stasioner dalam kawat dan jika diamati akan terlihat adanya simpul dan perut di antara simpul-silpul tersebut. Diantara simpul-simpul itu antara lain adalah A dan K yaitu ujung-ujung kawat tersebut, ujung A pada garpu tala dan simpul K pada bagian yang ditumpu oleh katrol. Pada seluruh panjang kawat AK = L dibuat terjadi 4 gelombang, maka kawat mempunyai l1 = L. Apabila f adalah frekwensi getaran tersebut, maka cepat rambat gelombang dalam kawat adalah v1 = f . l1 = f L
Jadi sekarang beban di tambah hingga menjadi 4g gram, maka pada seluruh panjang kawat ternyata hanya terjadi 2 gelombang, jadi : 2 l2 = L         l2 =L         sehingga :
v2 = f . l2 = f L
Kemudian beban dijadikan 16g gram, maka pada seluruh panjang kawat hanya terjadi satu gelombang, jadi :  l3 = L, maka v3 = f . l3 = f L
Beban dijadikan 64g gram, maka pada seluruh panjang  kawat hanya terjadi gelombang, jadi : l4 = L         l4 =2 L sehingga v4 = f . l4 = 2f . L
Dari hasil pengamatan ini, maka timbul suatu anggapan atau dugaan, bahwa agaknya ada hubungan antara cepat rambat gelombang dengan berat beban, yang pada hakekatnya merupakan tegangan dalam kawat. data pengamatan tersebut di atas kita susun sebagai :
Pengamatan I
F1 = g
l1  =  L
v1   = f . L
Pengamatan II
F2 = 4 g
l2  =  L
v2  = f . L
Pengamatan III
F3 = 16 g
l3  =   L
v3  =  f . L
Pengamatan IV
F4 = 64 g
l4   =  2 L
v4 =  2 f . L

Data di atas kita olah sebagai berikut :
 , dan 
 , dan 
 , dan 

KESIMPULAN 1.
Cepat rambat gelombang dalam tali, kawat, dawai berbanding senilai dengan akar gaya tegangan kawat, tali dawai tersebut.

Percobaan di atas diulang kembali dengan bahan sama, panjang kawat tetap, beban sama (dimulai dari 16 g  gram), hanya saja luas penampang kawat dibuat 4 kali lipat, maka dapat kita amati sebagai berikut :
l1’ = L sehingga v1’=  .f L
v3 = f .L (dari percobaan pertama, dengan menggunakan 16g gram) maka :
Percobaan diulangi lagi dengan beban tetap 16 g gram, akan tetapi kawat diganti dengan kawat yang berpenampang 16 kali lipat (dari bahan yang sama dan panjang tetap), maka dalam kawat terjadi 4 gelombang, sehingga :
l2’ = L sehingga v2’=  .f L  sehingga :

Apabila panjang kawat tetap dan dari bahan yang sama, sedangkan penampang diubah, maka berarti sama dengan mengubah massa kawat. Kalau massa kawat semula adalah m1, maka pada percobaan tersebut massa kawat berturut-turut diubah menjadi m2 = 4 m1
dan m3 = 16 m1. dari data percobaan kedua, setelah diolah sebagai berikut :
 , dan 

 , dan 
Dari pengolahan data tersebut dapatlah disimpulkan :

KESIMPULAN 2.
Cepat rambat gelombang berbanding balik nilai akar kuadrat massa kawat, asalkan panjangnya tetap.
Percobaan selanjutnya diulangi lagi, akan tetapi diusahakan agar massa kawat antara simpul-simpul A dan K tetap, sedangkan panjang AK variabel. Ternyata cepat rambatnyapun berubah pula, meskipun beban tidak berubah, Kalau jarak AK menjadi jarak semula yaitu = L, maka cepat rambatnya menjadi kali semula, sebaliknya jika panjang kawat AK  dilipat empatkan dari AK semula, menjadi 4 L maka cepat rambatnya menjadi 2 kali cepat rambat semula, asalkan massa kawat tetap. Dari percobaan ketiga ini dapatlah disimpulkan.






KESIMPULAN 3.
Untuk massa kawat yang tetap, maka cepat rambat gelombang berbanding senilai dengan akar kuadrat panjang kawat.
Kesimpulan (2) dan (3) dapat disatukan menjadi : Cepat rambat gelombang dalam kawat berbanding terbalik nilai dengan akar massa persatuan panjang kawat.

Jika massa persatuan panjang kawat ini dimisalkan atau dilambangkan dengan, maka kesimpulan (1) sampai dengan (3) di atas dapat dirumuskan menjadi :
v = cepat rambat gelombang dalam kawat (tali, dawai)
F = gaya tegangan kawat
m = massa persatuan panjang kawat
k = faktor pembanding, yang dalam SI harga k = 1.

Satuan : dalam SI :      F = newton    
EFFEK DOPPLER

Memang benar jika dikatakan, bahwa frekwensi bunyi sama dengan frekwensi sumbernya. Akan tetapi tidaklah selalu demikian antara frekwensi sumber bunyi dengan frekwensi bunyi yang kita dengar. Apabila antara sumber bunyi dan pendengar tidak ada gerakan relatif, maka frekwensi sumber bunyi dan frekwensi bunyi yang didengar oleh seseorang adalah sama. Akan tetapi jika antara sumber bunyi dan si pendengar ada gerak relatif, misalnya sumber bunyi bergerak mendekati si pendengar, atau si pendengar bergerak mendekati sumber bunyi, atau keduanya bergerak saling mendekati atau menjauhi, ternyata antara frekwensi sumber bunyi dan frekwensi bunyi yang didengar tidaklah sama. Suatu contoh misalnya ketika anda naik bis dan berpapasan dengan bis lain yang sedeang membunyikan klakson, maka akan terdengar suara yang lebih tinggi, berarti frekwensinya lebih besar dan sebaliknya ketika bis menjauhi anda, bunyi klakson terdengar lebih rendah, karena frekwensi bunyi yang didengar berkurang. Peristiwa ini dinamakan Effek Doppler.

Jadi Effek Doppler adalah peristiwa berubahnya harga frekwensi bunyi yang diterima oleh pendengar (P) dari frekwensi suatu sumbner bunyi (S) apabila terjadi gerakan relatif antara P dan S.

Oleh Doppler dirumuskan sebagai :
fP  adalah frekwensi yang didengar oleh pendengar.
fS adalah frekwensi yang dipancarkan oleh sumber bunyi.
vP adalah kecepatan pendengar.
vS adalah kecepatan sumber bunyi.
v  adalah kecepatan bunyi di udara.

Tanda + untuk vP dipakai bila pendengar bergerak mendekati sumber bunyi.
Tanda -  untuk vP dipakai bila pendengar bergerak menjauhi sumber bunyi.
Tanda + untuk vS dipakai bila sumber bunyi bergerak menjauhi pendengar.
Tanda -  untuk vS dipakai bila sumber bunyi bergerak mendekati penengar.

a.       Jika terdapat angin dengan kecepatan va dan menuju pendengar maka v menjadi (v+va)

b.      Jika angin menjauhi pendengar maka v menjadi (v-va)



-----o0o------


I.             CONTOH SOAL

Contoh 1.
Y = 10 sin (3t – 0,25 x) adalah suatu persamaan gelombang transversal, x dan y dalam cm. Carilah kecepatan gelombang tersebut.

Contoh 2.
Suatu gelombang transversal mempunyai persamaan :
Y = 10 cos 0,25px sin 3t  x dan y dalam cm
Hitunglah kecepatan gelombang tersebut.

Contoh 3.
Suatu tali panjangnya 5 m, amplitudo 10 cm, ujung A digetarkan dan ujung B bebas, kecepatan getar A 4 m/s dan periodenya ½ detik. Titik C terletak 3 meter dari ujung A. carilah simpangan A dan simpangan C saat A telah bergetar :
a.       ½ detik
b.     
c.      
d.     
Contoh 4.
Sebuah sumber bunyi dari 700 Hz bergerak dengan kecepatan 20 m/s menjauhi seorang pengamat yang diam. Berapa frekwensi yang di dengar oleh pengamat jika terdapat angin yang bergerak dengan kecepatan 10 m/s searah sumber bunyi dan  kecepatan bunyi 340 m/s.

Contoh 5.
Sebuah pipa  organa tertutup panjangnya 80 cm, ditiup dan menghasilkan nada atas kedua. Berapakah panjang pipa organa terbuka yang dapat menghasilkan nada atas pertama yang beresonansi dengan nada atas kedua pipa organa tertutup tersebut.

Contoh 6.
Suatu sumber bunyi memancarkan energi ke segala arah. Jika jarak sumber bunyi terhadap pendengar dibuat lebih jauh empat kali jarak semula. Berapakah berkurangnya taraf intensitasnya ?






TUGAS SOAL-SOAL

1.      Ditentukan persamaan gelombang y = 0,5 sin p (0,25 x - 100 t) dimana t dalam detik, x dan y dalam cm, maka tentukanlah :
      Amplitudo, Frekwensi, Panjang gelombang, Periode gelombang dan Kecepatan rambat gelombang.

2.      Persamaan suatu gelombang di sebuah tali diberikan : y = 0,06 sin (8t - 5x) x dan y dalam meter ; t dalam detik Bila massa persatuan panjang tali = 0,01kg/m, tentukanlah :
      Frekwensi, Panjang gelombang, Kecepatan gelombang, Amplitudo dan Tegangan talinya.

3.      Sebuah dawai bergetar, simpangannya sebagai fungsi waktu adalah y = 2 sin 0,16x cos 750 t , x dan y dalam cm  dan t dalam detik. Tentukanlah :
a. Amplitudo dan kecepatan masing-masing komponen penyusun getaran tersebut.
b. Jarak antara simpul-simpul.
c. Kecepatan partikel dalam dawai pada posisi x = 5 dan t = 2.10-3 detik.

4.      B adalah ujung terikat dari tali AB yang panjangnya 4 m. A digetarkan dengan amplitudo 3 cm dengan frekwensi 4 cps, sehingga pada tali terjadi gelombang transversal dengan cepat rambat 4 m/s. Titik P yang terletak 3m dari A mempunyai simpangan berapa, jika titik A telah menggetar 2detik.

5.      Seutas tali yang panjangnya 12 m, meter. Tali direntangkan sedemikian sehingga ujung A bebas dan ujung B terikat. Titik C yang letaknya tepat di tengah-tengah tali digetarkan dengan periode detik dan dengan amplitudo 25 cm, sehingga baik ke kiri maupun ke kanan terjadi gelombang transversal dengan cepat rambat 10 m/s. Jika C digetarkan selama 1 detik, maka tentukanlah :
a. Besar simpangan titik D dan E yang terletak meter di sebelah kiri dan
    kanan titik C.
b. Amplitudo titik-titik tersebut.

6.      Sepotong kawat panjangnya 10 meter yang ujungnya bertambat erat, sedang ujung lain digetarkan terus menerus dengan amplitudo 4 cm dan periode 0,1 detik. Jika cepat rambat yang terjadi 20 m/s, tentukanlah simpangan titik P yang terletak pada kawat sejauah 4meter dari titik pantul.

7.      Dawai yang massanya 0,2 gram dan panjangnya 80 cm, salah satu ujungnya diikatkan pada sebuah garpu tala yang memberikan frekwensi 250 HZ. Berapa tegangan tali yang harus diberikan agar tali dapat menggetar dengan empat perut gelombang.


8.      Pada percobaan Melde digunakan garpu tala sebagai sumber getar. Frekwensi yang ditimbulkannya adalah 365 Hz. tali yang dihubungkan dengannya direntangkan dengan beban 96 gram. Apabila jarak antara dua simpul yang berturutan = 4 cm, maka tentukanlah :
a. Cepat rambat gelombang pada tali.
b. Berapa tegangan yang harus diberikan agar jarak antara dua simpul yang berturutan menjadi 5 cm.
c. Berat dari 1 cm tali tersebut, apabila g =980 cm/det2

9.      Sepotong dawai tembaga dengan massa jenis 9.103 kg/m3 yang panjangnya 2 meter dan berpenampang 10-6 m2 mendapat tegangan oleh suatu gaya sebesar 360 N. Jika dawai dipetik, berapa frekwensi nada atas keduanya.

10.  Sebuah pipa organa terbuka menghasilkan nada atas kedua sebesar 1500 Hz. Bila cepat rambat suara di udara 340 m/s. Tentukanlah panjang pipa organa tersebut.
      Bila dengan panjang pipa di atas dijadikan pipa organa tertutup berapakah frekwensi nada atas pertamanya.

11.  Sebuah pipa organa terbuka menghasilkan nada dasar dengan frekwensi 249 cps. Sebuah dawai yang panjangnya 54 cm dengan gaya tegangannya menghasilkan nada dasar dengan frekwensi 440 cps. Pipa organa dihembus lebih kuat sehingga dihasilkan nada atas pertamanya. dawai sekarang diperpendek menjadi 48 cm dengan gaya tegangan tetap. lalu dipetik bersama-sama dengan hembusan pipa organa tersebut. Berapa layangan yang terjadi.

12.  Sepotong dawai yang  panjangnya 101 cm menghasilkan nada dasar yang menimbulkan layangan 2 Hz dengan nada dasar pipa organa tertutup yang panjang pipanya 42,5 cm. layangan hilang bila kawat dui potong 1 cm. Berapa panjang pipa organa harus diubah, agar tidak terjadi layangan, apabila dawai tidak dipotong.

13.  Sebuah pipa organa terbuka menghasilkan nada dasarnya dengan frekwensi 170 Hz. Bila panjang pipa organa terbuka tersebut sama dengan panjang sebuah pipa organa tertutup, maka berapa frekwensi nada atas pertama yang dihasilkan oleh pipa organa tertutup ini, bila cepat rambat bunyi di udara 340 m/s.

14.  Sebuah pipa organa tertutup panjangnya 50 cm dan sebuah dawai panjangnya 1 m, kedua dawai menghasilkan nada dasarnya, dan menyebabkan timbul 2 layangan per detik. nada dawai lebih tinggi. Kemudian dawai dipotong 66 cm dengan diberi tegangan tetap. nada yang dihasilkan dawai ini dengan nada atas pertama pipa organa membuat 4 layangan per detik, kini nada pipa organa yang lebih tinggi.
a. Hitung frekwensi nada dasaar pipa organa dan nada dasar dawai sebelum dipotong.
b. Hitung kelajuan rambat bunyi dalam udara dan dawai.

15.  Sebuah petasan diledakkan di suatu tempat. Pada jarak 2 meter dari pusat ledakan intensitasnya = 10-4 watt/m2. Tentukanlah daya ledakan dan intensitas bunyi pada jarak 20 meter dari pusat ledakan.

16.  Dalam suatu ruang periksa di Puskesmas ada seorang bayi menangis dengan taraf intensitas 80 dB. Bila dalam ruang tersebut terdapat 10 orang bayi yang menangis bersamaan dengan kekuatan sama, hitunglah taraf intensitasnya.

17.  Hitung perbandingan intensitas dua sumber bunyi yang mempunyai perbedaan taraf intensitas = 8 dB.

18.  Pada jarak 2 meter sumber ledakan mempunyai taraf intensitas 90 dB. Berapa taraf intensitas ledakan pada jarak 20 meter.

19.  Sebuah kereta api bergerak dengan kecepatan 72 km/jam mendekati dan kemudian meninggalkan stasiun (tanpa berhenti di stasiun) dan dengan kelajuan tetap. jika peluit yang dibunyikan berfrekwensi 440 Hz dan cepat rambat bunyi di udara 340 m/s, maka tentukanlah perbandingan frekwensi tertinggi dan terendah oleh seseorang di stasiun.

20.  Sebuah garpu tala frekwensinya 400 Hz digerakkan menjauhi pendengar, dan mendekati dinding dengan kecepatan 2 m/s. Jika kecepatan bunyi di udara 340 m/s. Berapa pelayangan akan terdengar perdetik, jika bunyi dipantulkan oleh dinding dan dianggap tidak ada penyerapan.

21.  Suatu bunyi dengan tingkat kebisingan 75 dB, sedangkan bunyi kedua dengan tingkat 72 dB, Berapakah tingkat kebisingan bila kedua suara tadi digabungkan.

22.  Dua gelombang bunyi intensitasnya masing-masing 10 dan 500 watt/cm2. Berapa perbedaan taraf inensitasnya dinyatakan dalam dB jika intensitas ambang                10-12 watt/m2